برای حل این سوال، ابتدا شرایط داده شده \( x < 0 \) و \( y < 0 \) را در نظر میگیریم. بنابراین، مقادیر مطلق به صورت زیر خواهند بود:
- \(|x| = -x\)
- \(|y| = -y\)
- \(|xy| = -xy\) (زیرا هر دو مقدار منفی هستند و حاصلضرب آنها مثبت میشود)
حال عبارت اصلی را بررسی میکنیم:
\[
|x| - |y| - |xy| + \sqrt{x} + 2y
\]
با توجه به توضیحات بالا، عبارت به شکل زیر تبدیل میشود:
\[
-x - (-y) - (-xy) + \sqrt{x} + 2y
\]
که سادهسازی آن عبارت زیر میشود:
\[
-x + y + xy + \sqrt{x} + 2y
\]
نکته: چون \( x \) و \( y \) هر دو منفی هستند، هیچیک از جملات زیر رادیکال معنی دار نیستند، بنابراین نمیتوان جواب قطعی ارائه داد و بهتر است این حالت منطقی را با دقت بیشتری بررسی کنید.
در پاسخ به سوال و شرایط فوق، بهنظر میآید سوال بهگونهای طراحی شده که نادرست است و نیازمند بازنگری یا تغییر شرایط است.