برای حل این مسئله، بیایید ابتدا زوایای هر مثلث را بررسی کنیم.
1. **مثلث اول**:
- این مثلث یک زاویه 90 درجه دارد (قائم الزاویه).
- یکی از زوایا 30 درجه است.
- مجموع زوایای داخلی مثلث 180 درجه است.
- بنابراین زاویه سوم را میتوانیم بیابیم:
\[
180 - 90 - 30 = 60 \text{ درجه}
\]
2. **شكل چهارضلعی**:
- شکل چهارضلعی شامل دو زاویه 90 درجه و یک زاویه 75 درجه است.
- مجموع زوایای داخلی چهارضلعی 360 درجه است.
- زاویه نهایی را میتوان با محاسبه یافت:
\[
360 - 90 - 90 - 75 = 105 \text{ درجه}
\]
بنابراین، اندازه زاویههای خواسته شده در مثلث و چهارضلعی مشخص شد.