ریاضی ششم-

فصل دوم ریاضی ششم

ساجده سلیمی

ریاضی ششم. فصل دوم ریاضی ششم

هرگاه دوکسردارای مخرج برابر باشد کسری کوچکتراست که صورت ان جای خالی باشد

جواب ها

برای فهم بهتر این سوال، ابتدا چند نکته را شرح می‌دهیم. ما دو کسر داریم که مخرج آن‌ها برابر است. به طور کلی، اگر دو کسر \(\frac{a}{c}\) و \(\frac{b}{c}\) داشته باشیم که \(c\) مخرج مشترک است، می‌توانیم با مقایسه صورت‌ها (عددهای بالایی کسرها) آن‌ها را با هم مقایسه کنیم. حالا، اگر صورت کسر اول یعنی \(a\) یک عدد مشخص باشد و صورت کسر دوم \(b\) یک عدد نامشخص (جای خالی) باشد، در این صورت ما باید توجه کنیم که کسر کوچکتر مربوط به صورت کوچکتر است. به عبارت دیگر: - اگر \(a < b\)، آنگاه \(\frac{a}{c} < \frac{b}{c}\). - و اگر \(a > b\)، آنگاه \(\frac{a}{c} > \frac{b}{c}\). از آنجایی که ما به دنبال کسری هستیم که کوچکتر باشد و صورت آن جای خالی است، می‌توانیم به این نتیجه برسیم که صورت کسری که کوچکتر است باید از صورت کسر دیگر (که عدد مشخصی است) کوچکتر باشد. به طور خلاصه، برای پیدا کردن کسر کوچکتر، کافی است مطمئن شویم که صورت کسر مربوط به خودمان (که در آن جای خالی داریم) یک عدد کوچکتر از عدد موجود باشد. مثال: اگر داریم \(\frac{2}{5}\) و کسری داریم \(\frac{?}{5}\)، در این صورت برای اینکه \(\frac{?}{5}\) کوچکتر از \(\frac{2}{5}\) باشد، باید عدد در صورت (جای خالی) یک عدد کوچکتر از 2 باشد. پس در صورت کلی، کسر کوچکتر از کسر با صورت مشخص، باید صورتش عددی کوچکتر باشد. این نکته را همیشه به خاطر داشته باشید که مقایسه کسرها تنها به صورت آنها بستگی دارد وقتی که مخرج‌ها برابر هستند!

هرگاه دو کسر دارای مخرج برابر باشند کسری کوچکتر است که صورت آن «بزرگتر» باشد. موفق باشید:)🎀

مهسا

ریاضی ششم

هرگاه دوکسر دارای مخرج برابر باشد کسری کوچکتر است که صورت آن کوچکتر باشد

سوالات مشابه

Ad image

اشتراک رایگان فیلیمومدرسه

ویژه اول تا دوازدهم

دریافت