### پاسخ:
**بخش الف: سادهسازی عبارت جبری**
عبارت \( 5(2a - 3b) - (1.5a - 4b) \) را میخواهیم سادهسازی کنیم:
1. توزیع عدد 5 در داخل پرانتز:
\[
5(2a - 3b) = 10a - 15b
\]
2. عبارت دوم پرانتز را با همان ضریب بگذارید:
\[
-(1.5a - 4b) = -1.5a + 4b
\]
3. حالا عبارتهای مشابه را با هم جمع کنید:
\[
10a - 15b - 1.5a + 4b = (10a - 1.5a) + (-15b + 4b) = 8.5a - 11b
\]
بنابراین، عبارت سادهشده برابر است با \( 8.5a - 11b \).
---
**بخش ب: حل معادله**
معادلهای که میخواهیم حل کنیم: \( 6x - 2 = 10 \)
مراحل حل:
1. طرفین معادله را به 2 اضافه کنید:
\[
6x - 2 + 2 = 10 + 2 \ 6x = 12
\]
2. دو طرف معادله را بر 6 تقسیم کنید:
\[
x = \frac{12}{6} \ x = 2
\]
پس \( x = 2 \).
---
**بخش ج: تکمیل جدول**
جدول مقادیر برای \( 6x - 2 \):
- وقتی \( x = -1 \):
\[
6(-1) - 2 = -6 - 2 = -8 \]
بنابراین، مقدار برابر است با \( -8 \).
جدول به صورت زیر تکمیل میشود:
\[
\begin{array}{|c|c|}
\hline
x & 6x-2 \\hline
-1 & -8 \\hline
\end{array}
\]
این جدول نشاندهندهی محاسبه برای یک مقدار \( x \) است.