این تصویر شامل سوالات ریاضی ششم است که باید با رعایت ترتیب عملیات (قوانین اولویت عملیات) حل شوند. در ادامه به حل هر عبارت میپردازیم:
1. **\(2 + 3 \times 4\):**
ابتدا ضرب را انجام میدهیم:
\[
3 \times 4 = 12
\]
سپس جمع را انجام میدهیم:
\[
2 + 12 = 14
\]
2. **\(11 \times 9 - (3 \times 4 \times 5) + (4 + 12)\):**
ابتدا محاسبات داخل پرانتز را انجام میدهیم:
\[
3 \times 4 \times 5 = 60
\]
\[
4 + 12 = 16
\]
سپس بقیه عملیات:
\[
11 \times 9 = 99
\]
\[
99 - 60 + 16 = 55
\]
3. **\(14 - 0.7 \times (5/6 - 2/4)\):**
ابتدا محاسبات داخل پرانتز:
\[
5/6 - 2/4 = 5/6 - 1/2 = 5/6 - 3/6 = 2/6 = 1/3
\]
سپس ضرب:
\[
0.7 \times 1/3 = 0.7/3 \approx 0.2333
\]
و در نهایت:
\[
14 - 0.2333 \approx 13.7667
\]
4. **\(17 \times (8 + 3 \times (3 + 12))\):**
ابتدا جمع داخل پرانتز:
\[
3 + 12 = 15
\]
سپس ضرب داخل پرانتز:
\[
3 \times 15 = 45
\]
\[
8 + 45 = 53
\]
در نهایت ضرب اصلی:
\[
17 \times 53 = 901
\]
5. **\(13 / 1.1 \times 10\):**
ابتدا تقسیم را انجام میدهیم:
\[
13 / 1.1 \approx 11.8181
\]
سپس ضرب:
\[
11.8181 \times 10 \approx 118.181
\]
6. **\(12 - \frac{3}{5}\):**
مستقیماً کم کردن:
\[
12 - 0.6 = 11.4
\]
7. **\(1/6 \times \frac{9}{10}\):**
ضرب دو کسر:
\[
1/6 \times 9/10 = 9/60 = 3/20 = 0.15
\]
8. **\(5 \times \left(\frac{r - 3}{4}\right)\):**
بدون مقدار مشخص برای \( r \)، نمیتوانیم پاسخ عددی بدهیم.
9. **\(0/75 + (4/0/76 - 1/135)\):**
بدون تصحیح عبارتها، نمیتوانیم دقیقاً حل کنیم.
10. **\(10 - 2 + 7 \times 2\):**
ابتدا ضرب:
\[
7 \times 2 = 14
\]
سپس جمع و تفریق:
\[
10 - 2 + 14 = 22
\]
11. **\(2 + 2 \times ((3 + (3 \times (4/4 \times (5/75 + 1/75))))\):**
محاسبات گام به گام:
\[
4/4 = 1, \quad 5/75 + 1/75 = 6/75 = 2/25
\]
\[
3 \times 2/25 = 6/25
\]
\[
3 + 6/25 = 3.24
\]
\[
2 \times 3.24 = 6.48
\]
\[
2 + 6.48 = 8.48
\]
12. **\(26 - 6