سارینا ..

ریاضی دهم. فصل 1 ریاضی دهم

محض رضای خدا...فقط بگید چکار کنم راه حلشو بگید

جواب ها

برای حل این مسئله، شما نیاز دارید تا ارتفاع حداکثر منحنی \( y = -x^2 + 6x - 5 \) را پیدا کنید. این نوع سوالات معمولاً مرتبط با پیدا کردن رأس یک سهمی هستند، زمانی که معادله در فرم مربعی داده شده است. معادله به فرم استاندارد سهمی \( y = ax^2 + bx + c \) داده شده است که در آن: \( a = -1 \)، \( b = 6 \) و \( c = -5 \). رأس سهمی در این حالت، نقطه اوج یا مینیمم آن است (بسته به علامت \( a \)). چون \( a < 0 \)، این سهمی رو به پایین است، بنابراین رأس آن نقطه اوج است. مختصات خط تقارن و نقطه اوج سهمی \( x = -\frac{b}{2a} \) است: \[ x = -\frac{6}{2 \times (-1)} = 3 \] برای پیدا کردن مقدار \( y \) در این نقطه، \( x = 3 \) را در معادله جایگذاری کنید: \[ y = -(3)^2 + 6 (3) - 5 \] \[ = -9 + 18 - 5 \] \[ = 4 \] بنابراین، ارتفاع حداکثر منحنی 4 است.

سوالات مشابه فصل 1 ریاضی دهم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام