ریاضی نهم-

فصل3 ریاضی نهم

Ehsan

ریاضی نهم. فصل3 ریاضی نهم

اگه تونستید لطفا حل کنید

جواب ها

برای حل این سوال، باید دو وتر هم‌عرض \(AD\) و \(BC\) را در دایره بررسی کنیم. در دایره‌ای که \(O\) مرکز آن است، اگر دو وتر پایای یک زاویهٔ مرکزی برابر را قطع کنند، طول آن‌ها برابر است. فرض می‌کنیم وترهای \(AD\) و \(BC\) در دایره با مرکز \(O\) و شعاع برابر باشند. این به معنای این است که فاصلهٔ هر وتر از مرکز دایره برابر است. از آنجا که مرکز دایره نسبت به دو وتر متقارن است، طول این وترها برابر خواهد بود. بنابراین بر اساس تعریف دایره و ویژگی‌های آن، نتیجه می‌گیریم که: \[ AD = BC \] اثبات با استفاده از خاصیت تقارن و تعریف برابری زاویه‌های مرکزی انجام شد.

کوثر

ریاضی نهم

بفرمائید 🤍

سوالات مشابه

Ad image

اشتراک رایگان فیلیمومدرسه

ویژه اول تا دوازدهم

دریافت