برای حل این سوال، باید از قوانین توانها استفاده کنیم.
سوال به این صورت است:
\[
\left(3^{-a^3}\right)^4 \times (2a^2)^3
\]
1. ابتدا هر یک از بخشها را جداگانه محاسبه میکنیم.
2. **محاسبه بخش اول:**
\[
\left(3^{-a^3}\right)^4 = 3^{-a^3 \cdot 4} = 3^{-4a^3}
\]
3. **محاسبه بخش دوم:**
\[
(2a^2)^3 = 2^3 \cdot (a^2)^3 = 8 \cdot a^{2 \cdot 3} = 8a^6
\]
4. **ضرب این دو نتیجه:**
\[
3^{-4a^3} \cdot 8a^6
\]
این مرحله از حل به صورت سادهسازی قابل ادامه دادن است:
\[
8 \cdot a^6 \cdot 3^{-4a^3}
\]
پاسخ نهایی به صورتی است که دو عبارت با یکدیگر ضرب شدهاند، بنابراین عبارت در نهایت بهصورت زیر است:
\[
8a^6 \cdot 3^{-4a^3}
\]
این یک پاسخ ساده شده نیست و بهتر است با توجه به نظر معلم یا تمرینات بیشتر بررسی شود.