ریاضی نهم -

فصل2 ریاضی نهم

متین کاظمی نیا

ریاضی نهم. فصل2 ریاضی نهم

بچه ها گروه زدم توی ایتا ایدیتون رو بدید باهم اونجا صحبت کنیم

جواب ها

برای حل معادله \( 5^{2x-3} \times 5^x = 5^7 \) ابتدا باید خاصیت ضرب توان‌ها را استفاده کنیم. طبق این خاصیت: \[ a^m \times a^n = a^{m+n} \] بنابراین: \[ 5^{(2x-3)} \times 5^x = 5^{(2x-3+x)} = 5^{3x-3} \] حال معادله را به صورت: \[ 5^{3x-3} = 5^7 \] می‌نویسیم. چون پایه‌ها برابر هستند، توان‌ها نیز باید مساوی باشند، بنابراین: \[ 3x - 3 = 7 \] حالا معادله را حل می‌کنیم: 1. دو طرف معادله را با 3 جمع می‌کنیم: \[ 3x - 3 + 3 = 7 + 3 \] \[ 3x = 10 \] 2. دو طرف معادله را بر 3 تقسیم می‌کنیم: \[ x = \frac{10}{3} \] پس مقدار \( x \) برابر با \(\frac{10}{3}\) است.

.‌ باباتم

ریاضی نهم

x=+9 تو ضرب اگه پایه ها یکی بودن جمع میکردیم پس در این صورت: (+9)+(-2)=7

9 چون پایه برابر اند پس باید توان ها را جمع کرد اینجا آمده جواب جمع توان ها داده اینجا از ما خواسته یکی از توانها را به دست آوریم به این صورت است معادله یا به صورت ساده .

سوالات مشابه

Ad image

اشتراک رایگان فیلیمومدرسه

ویژه اول تا دوازدهم

دریافت