برای تشخیص معادلهای که محدودیت روی زمان (متغیر \( t \)) دارد، باید به رفتار گذرا و نامحدود \( x \) نسبت به \( t \) توجه کرد.
در گزینههای دادهشده:
1. \( x = 2t - 8 \) خطی است و هیچ محدودیتی وجود ندارد.
2. \( x = \sqrt{t + 3} \) برای \( t \geq -3 \) تعریف میشود و محدودیت دارد.
3. \( x = \frac{1-t}{1+t} \) در \( t = -1 \) تعریف نشده است.
4. \( x = |t + 8| \) مطلق است و هیچ محدودیتی ندارد, اما پیوسته است.
5. \( x = 1 - \frac{2}{t - 3} \) برای \( t = 3 \) تعریف نشده است زیرا مقاوم بینهایت میشود.
بنابراین، پاسخ معادلهای که حرکت محدود گذرا دارد، گزینه دوم \( x = \sqrt{t + 3} \) است زیرا تنها در \( t \geq -3 \) تعریف میشود و قبل از آن غیرمعتبر است.