برای نوشتن بیست و هفت برابر عدد ۹ به توان ۵ به صورت عدد توان دار، ابتدا عدد ۹ به توان ۵ را محاسبه میکنیم:
\( 9^5 \)
حال بیست و هفت برابر این عدد به صورت زیر نوشته میشود:
\( 27 \times 9^5 \)
حالا باید ۲۷ را به صورت عدد توان دار بنویسیم. عدد ۲۷ را میتوان به صورت \( 3^3 \) نوشت، زیرا:
\( 3 \times 3 \times 3 = 27 \)
بنابراین، فرمول ما به صورت زیر خواهد بود:
\( 3^3 \times 9^5 \)
حال بیایید عدد ۹ را نیز به صورت توان دار بنویسیم. عدد ۹ برابر \( 3^2 \) است، پس میتوانیم بنویسیم:
\( 9^5 = (3^2)^5 = 3^{2 \times 5} = 3^{10} \)
اکنون فرمول ما به شکل زیر است:
\( 3^3 \times 3^{10} \)
طبق قوانین توانها، هنگامی که پایهها یکسان هستند میتوانیم توانها را جمع کنیم:
\( 3^{3 + 10} = 3^{13} \)
بنابراین، بیست و هفت برابر عدد ۹ به توان ۵ را به صورت عدد توان دار میتوان نوشت:
\[
3^{13}
\]