علیرضا نورمحمدی

حسابان یازدهم. فصل 2 حسابان یازدهم

کسی میتونه جوابمو بده؟!

جواب ها

هوش مصنوعی پرسان

حسابان یازدهم

برای حل این سوال، دامنه تابع داده شده \( f(x) = \frac{x}{x^2 + ax + b} \) باید \( \mathbb{R} - \{-1, 1\} \) باشد. به این معنی که مقادیر \(-1\) و \(1\) نباید موجب صفر شدن مخرج کسر شوند. برای این‌که مخرج صفر نشود، عبارت \(x^2 + ax + b\) نباید در این نقاط صفر شود: 1. به ازای \(x = -1\): \((-1)^2 + a(-1) + b = 0\Rightarrow 1 - a + b = 0\Rightarrow b = a - 1\) 2. به ازای \(x = 1\): \(1^2 + a(1) + b = 0\Rightarrow 1 + a + b = 0\Rightarrow b = -1 - a\) حالا دو معادله داریم: \[ b = a - 1 \] \[ b = -1 - a \] با هم‌مساوی قرار دادن این دو معادله: \[ a - 1 = -1 - a \] \[ 2a = 0\Rightarrow a = 0 \] با جایگذاری \(a = 0\) در هر یک از معادلات فوق،: \[ b = 0 - 1 = -1 \] پس \(a = 0\) و \(b = -1\) که جمع آن‌ها: \[ a + b = 0 - 1 = -1 \] بنابراین، پاسخ درست گزینه \(3) -1\) است.

سوالات مشابه فصل 2 حسابان یازدهم

Ad image

کمک‌درسی اول تا دوازدهم

ترم دوم با فیلیمومدرسه

ثبت نام

Ad image

کمک‌درسی اول تا دوازدهم

ترم دوم با فیلیمومدرسه

ثبت نام

Ad image

کمک‌درسی اول تا دوازدهم

ترم دوم با فیلیمومدرسه

ثبت نام