برای پیدا کردن طول پارهخط \( OA \)، به نظر میرسد که از قضیه فیثاغورس استفاده میشود. در شکل تعدادی مثلث قائمالزاویه مشاهده میشود و میتوان از قضیه فیثاغورس بهره برد.
فرض کنید در هر مرحله یکی از مثلثهای قائمالزاویه تکتک کنار هم قرار گرفتهاند . باید اطلاعات بیشتری داشته باشیم تا بتوانیم به طور دقیق مشخص کنیم که کدام یک از گزینهها صحیح است.
اما اگر مراحل به ترتیبی مشخص پشت سر هم قرار گرفته باشند، با توجه به این که محاسبات مربعی به پایانی است، احتمال داشتن طول به صورت مجموعهای از طولها برای پیدا کردن طول نهایی که مجموع آنها طول \( OA \) را تشکیل میدهد، ممکن است.
پاسخ صحیح با توجه به شرایط ایدهآل میتواند گزینهای باشد که مجموع مربعها برابر با یک عدد کامل باشد (مثلاً: \(\sqrt{144}\)).
با این حال، همیشه مطمئن شوید که محاسبات دقیق هستند و پاسخ نهایی تمام شرایط را برآورده میکند. در این مورد، گزینه ۴ یعنی \(\sqrt{144}\) گزینه صحیح میتواند باشد.