برای حل این مسئله، ما باید دمای آب را پس از هر ساعت محاسبه کنیم. از آنجایی که دما در هر ساعت ۱۰ درصد افزایش مییابد، برای محاسبه دمای آب در هر ساعت میتوانیم از فرمول زیر استفاده کنیم:
\[ D_n = D_0 \times (1 + r)^n \]
که در آن:
- \( D_n \) دما پس از \( n \) ساعت است.
- \( D_0 \) دما در زمان اولیه است.
- \( r \) نرخ افزایش دما است (در اینجا ۱۰ درصد یا ۰.۱).
- \( n \) تعداد ساعتها است.
در این سوال:
- \( D_0 = 50 \) درجه
- \( r = 0.1 \)
- \( n = 8 \)
حالا باید مقدار \( D_8 \) را محاسبه کنیم:
\[
D_8 = 50 \times (1 + 0.1)^8
\]
ابتدا محاسبه میکنیم:
\[
1 + 0.1 = 1.1
\]
سپس \( 1.1 \) را به توان ۸ میرسانیم:
\[
1.1^8 \approx 2.1436
\]
حالا مقدار نهایی دما را محاسبه میکنیم:
\[
D_8 = 50 \times 2.1436 \approx 107.18
\]
بنابراین، دمای آب پس از ۸ ساعت حدود \( 107.18 \) درجه خواهد بود.