برای گویا کردن مخرج کسر \( \frac{x}{\sqrt[3]{4} + \sqrt[3]{2} + 1} \) میتوانیم از روشی به نام "ضرب مزدوج" استفاده کنیم. بنابراین مراحل زیر را دنبال میکنیم:
1. مخرج را با مزدوج آن ضرب میکنیم. مزدوج عبارت \( \sqrt[3]{4} + \sqrt[3]{2} + 1 \) عبارت \( \sqrt[3]{4} + \sqrt[3]{2} - 1 \) است.
2. کسر را در فرم زیر بازنویسی کنید:
\[
\frac{x}{\sqrt[3]{4} + \sqrt[3]{2} + 1} \times \frac{\sqrt[3]{4} + \sqrt[3]{2} - 1}{\sqrt[3]{4} + \sqrt[3]{2} - 1}
\]
3. مخرج:
به معادله مخرج به صورت \( (\sqrt[3]{4} + \sqrt[3]{2})^2 - 1^2 \) توجه کنید:
\[
(\sqrt[3]{4})^2 + 2\sqrt[3]{4}\sqrt[3]{2} + (\sqrt[3]{2})^2 - 1
\]
4. مخرج را ساده کنید.
با این مراحل، کسر گویا میشود و مخرج کسری که محتوای اعداد گویا دارد به دست میآید.