who ohw

ریاضی دهم. فصل3 ریاضی دهم

نوشته درستی تساوی رو بررسی کنید

جواب ها

برای بررسی درستی تساوی \((1 - \sin \theta)^2 + \frac{1}{1 + \tan^2 \theta} = 2 - 2 \sin \theta\)، مراحل زیر را دنبال می‌کنیم: 1. **استفاده از هویت‌های مثلثاتی:** \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] بنابراین، می‌دانیم: \[ 1 + \tan^2 \theta = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \] در نتیجه: \[ \frac{1}{1 + \tan^2 \theta} = \cos^2 \theta \] 2. **جایگذاری و ساده‌سازی تساوی:** \[ (1 - \sin \theta)^2 + \cos^2 \theta = 2 - 2 \sin \theta \] گسترش عبارت \((1 - \sin \theta)^2\): \[ (1 - \sin \theta)^2 = 1 - 2 \sin \theta + \sin^2 \theta \] 3. **سادگی تساوی با قرار دادن موارد بالا:** \[ 1 - 2 \sin \theta + \sin^2 \theta + \cos^2 \theta = 2 - 2 \sin \theta \] با توجه به اینکه \(\sin^2 \theta + \cos^2 \theta = 1\)، داریم: \[ 1 - 2 \sin \theta + 1 = 2 - 2 \sin \theta \] \[ 2 - 2 \sin \theta = 2 - 2 \sin \theta \] تساوی درست است.

سوالات مشابه فصل3 ریاضی دهم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام