یاسمن

ریاضی دهم. فصل2 ریاضی دهم

جواب پلیزز:))

جواب ها

برای حل این مسئله، باید محدودیت‌های \(\cos \theta\) را با توجه به محدوده داده شده برای \(\theta\) بیابیم. محدوده \(\theta\) داده شده است: \[ -60^\circ \leq \theta \leq 60^\circ \] می‌دانیم که: \[ \cos 60^\circ = \frac{1}{2} \] \[ \cos (-60^\circ) = \frac{1}{2} \] بنابراین، در این بازه، \(\cos \theta\) بین \(\frac{1}{2}\) و \(1\) تغییر می‌کند. از طرف دیگر، طبق معادله داده شده داریم: \[ \cos \theta = \frac{m+1}{3} \] بنابراین: \[ \frac{1}{2} \leq \frac{m+1}{3} \leq 1 \] این نابرابری را حل می‌کنیم: 1. سمت چپ: \[ \frac{1}{2} \leq \frac{m+1}{3} \] ضرب طرفین در 3: \[ \frac{3}{2} \leq m + 1 \] کم کردن 1 از هر دو طرف: \[ \frac{1}{2} \leq m \] 2. سمت راست: \[ \frac{m+1}{3} \leq 1 \] ضرب طرفین در 3: \[ m + 1 \leq 3 \] کم کردن 1 از هر دو طرف: \[ m \leq 2 \] در نتیجه، بازه \(m\) به صورت زیر است: \[ \frac{1}{2} \leq m \leq 2 \] بنابراین، جواب نهایی: محدود \(m\) از \(\frac{1}{2}\) تا \(2\) است.

سوالات مشابه فصل2 ریاضی دهم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام