حدیث✨

ریاضی هشتم. فصل5 ریاضی هشتم

کمکککککککککککککککککککککک؟

جواب ها

برای حل این سوال، ابتدا به بررسی مفهوم ضرب داخلی دو بردار می‌پردازیم. اگر دو بردار \([a, b]\) و \([c, d]\) داشته باشیم، ضرب داخلی آن‌ها به صورت زیر محاسبه می‌شود: \[ a \times c + b \times d \] در اینجا دو بردار داریم: \([2x + 1, -5]\) و \([0, -4y + 1]\). حالا باید ضرب داخلی آن‌ها را پیدا کنیم: \[ (2x + 1) \times 0 + (-5) \times (-4y + 1) = 0 + 20y - 5 = 20y - 5 \] از طرفی، طبق سوال این ضرب داخلی باید مساوی صفر باشد: \[ 20y - 5 = 0 \] با حل معادله بالا می‌توانیم \(y\) را پیدا کنیم: \[ 20y = 5 \quad \Rightarrow \quad y = \frac{5}{20} = \frac{1}{4} \] بنابراین \(y = \frac{1}{4}\) است. چیزی از \(x\) در این سوال پرسیده نشده، چون پیش‌فرض این است که بردارها عمود بر هم هستند (ضرب داخلی صفر). اگر سوال دیگری در مورد \(x\) پیش بیاید، به توضیحات بیشتری نیاز داریم. در حال حاضر \(y\) را با استفاده از عمود بودن دو بردار پیدا کرده‌ایم.

سوالات مشابه فصل5 ریاضی هشتم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام