اروین

ریاضی نهم. فصل4 ریاضی نهم

به این جواب بدین

جواب ها

به نظر می‌رسد که تصویر شامل سوالاتی از ریاضی نهم است. اجازه دهید به سوالات بپردازیم: ### سوال ۱۵: **الف) عدد \((\sqrt{5} - 3)^2\) ریشه دوم دارد:** - عدد \((\sqrt{5} - 3)^2\) یک مقدار مثبت است و هر عدد مثبت ریشه دوم دارد. بنابراین، جواب "صحیح" است. **ب) کدام یک از اعداد زیر منفی است؟** - گزینه‌های: \( (-3)^2 \)، \( (-1 \times 3)^2 \)، \((-1 \times 3)^{-3}\)، و \((-1)^{-2}\). - بررسی کنید: \((-1 \times 3)^{-3}\) یک عدد منفی خواهد بود، زیرا توان فرد است. بنابراین این گزینه صحیح است. ### سوال ۱۶: عبارت زیر را بصورت یک عدد توان‌دار بنویسید. - \((\frac{-1}{3})^{-3} \times 3^6\) - ساده‌سازی: \((-\frac{1}{3})^{-3} = -3^3\) - بنابراین: \(-3^3 \times 3^6 = -3^{3+6} = -3^9\) ### سوال ۱۷: عدد ۲۴۵۰۰۰۰۰۰ را بصورت نماد علمی نمایش دهید: - عدد ۲۴۵۰۰۰۰۰۰ در نماد علمی \(2.45 \times 10^8\) است. ### سوال ۱۸: عبارت های زیر را بدست آورید: **الف) \((3 \sqrt{4} \times 3^{3 \frac{1}{6}})\):** - \(3 \sqrt{4} = 3 \times 2 = 6\) - محاسبه کنید: \(6 \times 3^{3 \frac{1}{6}} = \ldots\) **ب) \(\sqrt{81} + \sqrt{1}\):** - \(\sqrt{81} = 9\) - \(\sqrt{1} = 1\) - بنابراین: \(9 + 1 = 10\) ### سوال ۱۹: عبارت زیر را ساده کنید: - \(\frac{(\sqrt{12} + \sqrt{72} - \sqrt{48})}{\sqrt{3}}\) - ساده‌سازی: - \(\sqrt{12} = 2 \sqrt{3}\), \(\sqrt{72} = 6 \sqrt{2} \) - \(\sqrt{48} = 4 \sqrt{3}\) - \((2 \sqrt{3} + 6 \sqrt{2} - 4 \sqrt{3}) = -2 \sqrt{3} + 6 \sqrt{2}\) - تقسیم بر \(\sqrt{3}\): \((-2 + 6 \frac{\sqrt{2}}{\sqrt{3}})\) ### سوال ۲۰: مخرج کسرهای زیر را گویا کنید: - **الف) \(\frac{7}{\sqrt{7}}\):** - ضرب صورت و مخرج در \(\sqrt{7}\) برای گویا کردن. - \(\frac{7\sqrt{7}}{7} = \sqrt{7}\) - **ب) \(\frac{r}{\sqrt{r}}\):** - ضرب صورت و مخرج در \(\sqrt{r}\) برای گویا کردن. - \(\frac{r\sqrt{r}}{r} = \sqrt{r}\) اگر توضیحات بیشتری نیاز دارید بگویید!

سوالات مشابه فصل4 ریاضی نهم

Ad image

جمع‌بندی شب امتحان فیلیمومدرسه

ویژه اول تا دوازدهم

ثبت نام