متأسفانه شماره گذاری در تصویر به وضوح مشخص نیست. .
اما برای کمک به حل چند نمونه روش کلی برای پاسخ به چنین سوالاتی را ارائه میکنم:
### بخش اول: پیدا کردن ضابطهی وارون توابع ساده
برای پیدا کردن ضابطهی وارون یک تابع \(f(x)\):
1. ابتدا \(y = f(x)\) را بنویسید.
2. جای \(x\) و \(y\) را با هم عوض کنید تا \(x = f(y)\) بدست آورید.
3. معادله حاصل را به صورت \(y\) بر حسب \(x\) حل کنید.
4. ضابطهی بهدستآمده، وارون تابع اصلی است: \(f^{-1}(x)\).
### بخش دوم: بررسی وجود وارون تابع
برای اینکه تابعی وارونپذیر باشد، باید همواره یک به یک (One-to-One) باشد. برای بررسی یکبهیکبودن:
- نمودار تابع را رسم کنید و تست خط افقی (Horizontal Line Test) را انجام دهید. یعنی هیچ خط افقی نباید بیش از یک بار نمودار تابع را قطع کند.
- به صورت جبری، اطمینان حاصل کنید که تابع یک به یک است.
### توجه
- اگر تابعی چنددازهای باشد، باید دامنه را به نحوی انتخاب کنید که هر بازه یک به یک باشد.
- چک کنید که دامنهی تابع اصلی با برد تابع وارون مطابقت داشته باشد و بالعکس.
امیدوارم این توضیحات کمک کند تا بتوانید به سوالات مشابه پاسخ دهید. اگر سوال خاصی در مورد روشی ذکر شده دارید، لطفاً بپرسید.