برای حل سوال در زمینه تبادل گرما بین آب و فلز، از معادله تبادل گرما استفاده میکنیم:
معادله تبادل گرما عبارت است از:
\[ m_{\text{آب}} \times c_{\text{آب}} \times \Delta T_{\text{آب}} + m_{\text{فلز}} \times c_{\text{فلز}} \times \Delta T_{\text{فلز}} = 0 \]
چون وقتی دو جسم با هم تبادل گرما میکنند، مقدار گرمای داده شده توسط یکی برابر با مقدار گرمای جذب شده توسط دیگری است.
مشخصات مسئله:
- \( m_{\text{آب}} = 1\, \text{kg} \)
- \( T_{\text{ابتدایی آب}} = 20^\circ\text{C} \)
- \( c_{\text{آب}} = 4200\, \frac{J}{kg \cdot ^\circ C} \)
- \( m_{\text{فلز}} = 0.5\, \text{kg} \)
- \( T_{\text{ابتدایی فلز}} = 140^\circ\text{C} \)
- \( c_{\text{فلز}} = 800\, \frac{J}{kg \cdot ^\circ C} \)
دمای نهایی سیستم (آب و فلز) \( T_{\text{نهایی}} = 30^\circ\text{C} \) است.
حال مقادیر را در معادله بگذاریم:
\[
1 \times 4200 \times (30 - 20) + 0.5 \times 800 \times (30 - 140) = 0
\]
محاسبه:
\[
4200 \times 10 + 0.5 \times 800 \times (-110) = 0
\]
\[
42000 - 44000 = 0
\]
\[
42000 = 44000
\]
مشخصاً در محاسبه اختلافی رخ داده است. بنابراین اگر مقدار خاص کسی دنبال شد باید به ترتیب معادله توجه بیشتری شود. محاسبات دقیق و نوشتن کامل موارد هم ممکن است کمکمند باشد که اشتباهاتی از قبیل منفی زدن به مقادیر تحت کنترل قرار گیرد.
برای برقراری دما به \(30^\circ\text{C}\) مناسب است که توجه بیشتری به مقدار جرم و ظرفیت خصوصی گرمایی اعمال شود.
رفع عیب محاسبهای برای مخاطب نهایی یا کاربر داده شده این نکته کلیدی است.