برای حل این مسئله، معادله درجه دوم زیر را داریم:
\[ 5x^2 + mx - 3 = 0 \]
یکی از ریشههای این معادله برابر ۱ است. بنابراین، باید مقدار ۱ را در معادله قرار داده و معادله را بهگونهای حل کنیم که صفر شود:
\[ 5(1)^2 + m(1) - 3 = 0 \]
که سادهسازی آن به شکل زیر است:
\[ 5 + m - 3 = 0 \]
\[ 2 + m = 0 \]
بنابراین:
\[ m = -2 \]
حالا به کمک مقدار \( m \) که بهدست آوردهایم، معادله به صورت زیر درمیآید:
\[ 5x^2 - 2x - 3 = 0 \]
حال، میخواهیم ریشههای معادله را پیدا کنیم. برای پیدا کردن ریشهها باید از روش دلتا استفاده کنیم. دلتا برابر است با:
\[ \Delta = b^2 - 4ac \]
در اینجا \( a = 5 \)، \( b = -2 \)، و \( c = -3 \). بنابراین:
\[ \Delta = (-2)^2 - 4 \times 5 \times (-3) \]
\[ \Delta = 4 + 60 \]
\[ \Delta = 64 \]